

HOMOLOGACION ISO 11143:2008 PARA FILTRO SEPARADOR Y RECUPERADOR DE AMALGAMA

Send To: C00112153

Mr. Raymond Mendlik Dennis J. Duel & Associates Inc. 510 North Lake Street Suite 7 Mundelein, IL 60060 **Facility: C0112153**

Dennis J. Duel & Associates Inc. 510 North Lake Street Suite 7 Mundelein IL 60060 United States

Result:	PASS	Report Date: May 11, 2015
Customer Name:	Dennis J. Duel & Associates Inc.	
Tested To:	NSF ISO11143	
Description:	ISO11143 Model DD2011	
Test Type:	Efficiency and operation	
Test Dates:	05-May-15, 06-May-15	
Test Location:	NSF International Ann Arbor MI	
Job Number:	J-00172739	
Project Number:	10008136 (PL01)	
Project Manager:	Sharon Steiner	

Executive Summary: The Model DD2011 BADER met the ISO 11143:2008 requirements for amalgam retention efficiency, operation and maintenance, and labeling. Testing was completed according to ISO 11143:2008.

Thank you for having your product tested by NSF International.

Please contact your Project Manager if you have any questions or concerns pertaining to this report.

Tests Performed By: Michael Chamberlain

Report Authorization:			
	Ata Ciechanowski P.F.	Assistant Director - Engine	ering Laborat

FI20150512130706

J-00172739 Page 1 of 10

Test Sample

Manufacturer: Dennis J. Duel & Associates Inc.

Designation: Model DD2011 Amalgam Separator

Type Classification: Type 3 - Filtration

Serial Number: 032415

Maximum Flow Rate: 1 Liter per minute

Maximum Fillable Volume: 0.360 Liters

Total System Volume: 0.360 Liters

System Dimensions: Height – 164 mm

Length – 96 mm Width – 96 mm

Figure 1 – DD2011 Amalgam Separator

FI20150512130706

The D2011 Amalgam separator consists of a canister that holds a spun fiber filter. The entire unit is changed out when full. The system also employs a vacuum gauge as a warning and alarm system. The gauge is connected to a tee in the vacuum line upstream of the filter cartridge.

Test Standard

Testing was performed to determine compliance of the supplied sample to ISO 11143:2008 "Dentistry – Amalgam separators". ISO 11143 specifies requirements for amalgam separators, such as amalgam retention efficiency and instructions for use, operation and maintenance.

Amalgam Sample

Amalgam test samples were obtained from "bm becker messtechnik gmbH". Each sample consisted of 10 g dental amalgam as specified in ISO Standard 11143. The detailed reports on the test samples are included in Appendix A.

Particle Size Distribution:

- $3000 \text{ mg}, < 100 \mu\text{m}$
- $1000 \text{ mg}, 100 \mu\text{m} 500 \mu\text{m}$
- $6000 \text{ mg}, 500 \mu\text{m} 3150 \mu\text{m}$

Amalgam Sample Lot Numbers:

• Charge 100416-10/14

Test Procedure

The test procedure used to determine the efficiency of the separators is defined in ISO 11143 for Type 3 systems. Deviations from the standard test procedure are noted below.

- Effluent Collecting Vessel
 - A large glass flask was used. The standard specifies a single stainless steel vessel with a minimum volume of 45 liters.
- Filters
- Diameter of filter membranes was 47 mm. The standard specifies 50 mm minimum.
- Nominal pore size used was 1.2 microns. The standard specifies pore sizes of 12.0, 3.0, and 1.2 microns
- One filter was used during filtering. When needed due to filter blinding, additional filters were used to process the remaining effluent from each test replicate.

FI20150512130706

J-00172739

Page 3 of 10

- Separating gauze was not used between filter membranes.
- Filtering was completed by vacuum instead of pressure.

Filters

One filter was used for amalgam retention efficiency tests:

1.) 1.2 micron nominal pore size, cellulose nitrate membrane filter, 47 mm diameter

During the empty trials and full trials, system effluent was passed through 1.2 micron filters. After each filter blinded, a new filter was installed to complete the process. As shown in tables 2 and 3, multiple filters were sometimes required for each replicate test.

Number of Tests Performed

Six tests were run on the sample separator provided by the manufacturer: Three tests were run on the separator when empty and three tests were run on the separator when filled to 95% of the maximum fillable volume.

The separator was filled to 95% of the maximum fillable volume with 70% glass beads 1 mm in size and 25% amalgam scrap ground to less than 300 micron. Table 1 shows the filling volumes for each material.

Model Specified Volume of Scrap Amalgam Used (mL) Volume of Glass Beads Used (mL)

DD2011 360 90 252

Table 1 – Loading of the Full Amalgam Separator

Test Data

The results from the efficiency tests are shown in Tables 2 and 3. The tare weight and final weight includes a stainless steel weighing dish. This helped to keep the residue in place during drying.

FI20150512130706

Table 2 – Empty Amalgam Separator Test Results

Empty Trial	Filter Size	Initial Filter Weight (g)	Final Filter Weight (g)	Un-separated Amalgam (g)	Weight of Challenge (g)	Efficiency
1	1.2 μm	8.71130	8.71380	0.00250	0.08836	99.975%
	Tri	al 1 Total		0.00250	9.98836	99.975%
2	1.2 μm	9.14357	9.15557	0.01200	0.00580	99.880%
	Trial 2 Total			0.01200	9.99580	99.000%
3	1.2 μm	8.92758	8.94114	0.01356	0.00156	99.864%
	Trial 3 Total			0.01356	9.99156	33.004%
	Average					99.906%

Table 3 – Full Amalgam Separator Test Results

Empty Trial	Filter Size	Initial Filter Weight (g)	Final Filter Weight (g)	Un-separated Amalgam (g)	Weight of Challenge (g)	Efficiency
1	1.2 μm	8.82747	8.88333	0.05586		
1	1.2 μm	8.57587	8.61067	0.03480	9.99207	99.093%
	Tri	ial 1 Total		0.09066		
2	1.2 μm	9.14397	9.15827	0.01430	9.99368	99.857%
	Trial 2 Total			0.01430	9.99506	99.637%
3	1.2 μm	8.81793	8.82508	0.00715	0.00705	99.928%
	Tri	ial 3 Total		0.00715	9.98785	33.328%
	Average					99.626%

Efficiency

The minimum efficiency required by ISO 11143 is 95% by mass.

Empty Amalgam Separator: DD2011 Efficiency, $\eta_1 = 99.906\%$

Full Amalgam Separator: DD2011 Efficiency, $\eta_2 = 99.626\%$

The lowest efficiency measured from the full and empty tests (η_1 or η_2) is the amalgam separator efficiency. Therefore, the overall efficiency for the sample is determined to be 99.626%.

Warning System (Type 3 System)

The DD2011 is provided with a vacuum gauge that indicates proper vacuum at the chair. When the vacuum drops to less than the acceptable level, the filter should be changed.

Alarm System for Collecting Container (Type 3 System)

The DD2011 is provided with a vacuum gauge that indicates proper vacuum at the chair. When the vacuum drops to less than the acceptable level, the filter should be changed.

Alarm System for Malfunction

Not applicable to a Type 3 system.

Removal of Filled Collecting Container

The filled collecting container can be removed and sealed so that no spillage occurs during replacement and transfer of the container.

Maximum Fillable Volume

The maximum fillable volume of the collecting container is 360 mL.

DD2011 Volume: 360 mL

Electrical Safety

DD2011 Amalgam Separator does not incorporate any electrical components.

FI20150512130706

J-00172739 Page 6 of 10

Results Obtained

Efficiency Pass/Fail Criteria: DD2011, 99.626% Pass

Warning System: DD2011 – Pass

Alarm System for Collecting Container: DD2011 – Pass

Removal of Filled Collecting Container: DD2011 – Pass

Maximum Fillable Volume: DD2011 – Pass

FI20150512130706

Appendix A Test Sample Particle Size Distribution Reports

Manufacturer Certificate for samples according ISO 11143

Production date: September 14 ISO 11143

Charge 100416-10/14 ISO amalgam sample

Fraction 1: 500 - 3150 μm Fraction 2: 100 - 500 μm

Customer: NSF International Fraction 3: < 100 µm

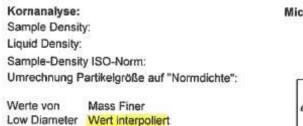
789 N. Dixboro Rd ann Arbor, MI 48105

Sedigramm chart date: October 23, 2014

Order No: Email dated November 19, 2014, Order No. 109472

Delivery: November 25, 2014

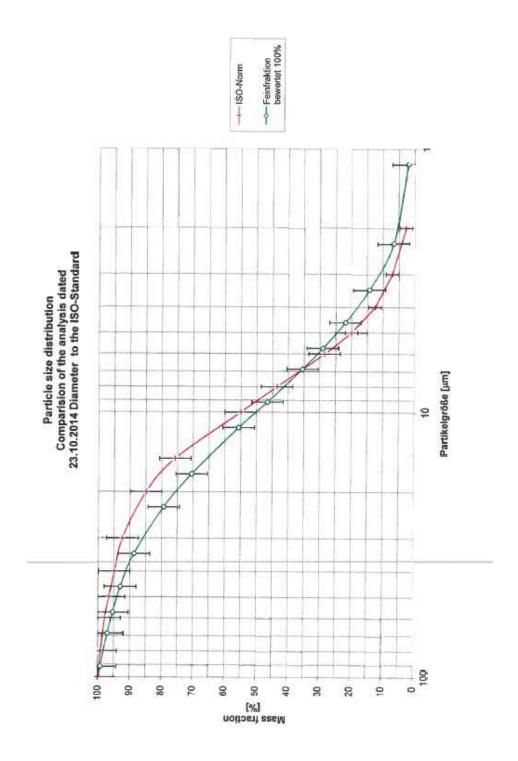
Total 10g ± 5mg


Probe No	Anteil [g]: Fraction 1	Fraction 2	Fraction 3	Total
25	6,001	0,997	3,001	9,999
26	5,998	1,001	3,001	10,000
27	6,003	0,998	3,000	10,001
28	6,002	0,998	3,000	10,000
29	6,000	0,999	3,002	10,001
30	5,999	0,999	3,002	10,000
31	6,004	0,998	2,999	10,001
32	5,998	1,001	3,001	10,000
33	5,996	1,004	2,999	9,999
34	5,998	1,003	3,000	10,001
35	6,002	1,001	3,000	10,003
36	6,000	1,001	2,999	10,000
37	6,000	1,002	3,001	10,003
38	6,003	0,999	3,000	10,002
39	5,999	1,003	3,001	10,003

789 N. Dixboro Rd. Ann Arbor, MI 48015, USA 1-800.NSF.MARK | +1-734.769.8010 | www.nsf.org

TEST REPORT

Kornverteilung



$$d_2 = d_1 \bullet \sqrt{\frac{\rho_s - \rho_L}{\rho_{s,N} - \rho_L}}$$

Messwerte		Messwerte	berechnet	EBe 08.02.95	ISO-Norm
Partikel- Größe d ₁	Feinfraktion Durchgang	norm. Partikel- Größe d ₂	Feinfraktion bewertet 100%	Feinfraktion Soll	Feinfraktion Soll
[µm]	[%]	[µm]	[%]	[%]	[%]
300	99,5	343,1			
250	99,4	285,9			
150	99,0	171,6			
100	97,2	114,4	100,0	100,00	100.00
80	96,5	91,5	99,3	98,75	99,15
60	94,3	68,6	97,0	97,50	97,89
50	92,7	57,2	95,4	96,25	96,58
40	90,4	45,7	93,0	93,75	94,87
30	86,2	34,3	88,7	90,00	92,40
20	77,1	22,9	79,3	82,50	84,90
15	68,5	17,2	70,5	75,00	75,70
10	54,1	11,4	55,7	58,75	55,00
8	45,3	9.1	46,6	46,25	43,53
6	34,5	6,9	35,5	31,25	28,50
5	28,2	5,7	29,0	22,50	20,00
4	21,3	4,6	21,9	15,00	12,54
3	13,9	3,4	14,3	8,13	7,14
2	6,5	2,3	6,7	2,50	2,85
1	2,0	1,1	2,1		- C4 = 1

FI20150512130706

J-00172739 Page 10 of 10